Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
Mar Pollut Bull ; 201: 116193, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428047

RESUMO

Natural ecological restoration is a cornerstone of modern conservation science and managers need more documented "success stories" to lead the way. In French mediterranean sea, we monitored Posidonia oceanica lower limit using acoustic telemetry and photogrammetry and investigated the descriptors driving its variations, at a national scale and over more than a decade. We showed significant effects of environmental descriptors (region, sea surface temperature and bottom temperature) but also of wastewater treatment plant (WWTP) effluents proxies (size of WWTP, time since conformity, and distance to the closest effluent) on the meadows lower limit progression. This work indicates a possible positive response of P. oceanica meadows to improvements in wastewater treatment and a negative effect of high temperatures. While more data is needed, the example of French wastewater policy should inspire stakeholders and coastal managers in their efforts to limit anthropogenic pressures on vulnerable ecosystems.


Assuntos
Alismatales , Ecossistema , Pradaria , Mar Mediterrâneo , Alismatales/fisiologia , Temperatura
2.
Mar Environ Res ; 197: 106443, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38507985

RESUMO

Natural disturbances can produce a mosaic of seagrass patches of different ages, which may affect the response to herbivory. These pressures can have consequences for plant performance. To assess how seagrass patch age affects the response to herbivory, we simulated the effect of herbivory by clipping leaves of Halodule wrightii in patches of 2, 4 and 6 years. All clipped plants showed ability to compensate herbivory by increasing leaf growth rate (on average 4.5-fold). The oldest patches showed resistance response by increasing phenolic compounds (1.2-fold). Contrastingly, the concentration of phenolics decreased in the youngest patches (0.26-fold), although they had a similar leaf carbon content to controls. These results suggest that younger plants facing herbivory pressure reallocate their phenolic compounds towards primary metabolism. Results confirm the H. wrightii tolerance to herbivory damage and provides evidence of age-dependent compensatory responses, which may have consequences for seagrass colonization and growth in perturbed habitats.


Assuntos
Alismatales , Herbivoria , Ecossistema , Alismatales/fisiologia , Plantas , Folhas de Planta/metabolismo
3.
Sci Total Environ ; 916: 170326, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266720

RESUMO

Seawater desalination by reverse osmosis is growing exponentially due to water scarcity. Byproducts of this process (e.g. brines), are generally discharged directly into the coastal ecosystem, causing detrimental effects, on benthic organisms. Understanding the cellular stress response of these organisms (biomarkers), could be crucial for establishing appropriate salinity thresholds for discharged brines. Early stress biomarkers can serve as valuable tools for monitoring the health status of brine-impacted organisms, enabling the prediction of long-term irreversible damage caused by the desalination industry. In this study, we conducted laboratory-controlled experiments to assess cellular and molecular biomarkers against brine exposure in two salinity-sensitive Mediterranean seagrasses: Posidonia oceanica and Cymodocea nodosa. Treatments involved exposure to 39, 41, and 43 psu, for 6 h and 7 days. Results indicated that photosynthetic performance remained unaffected across all treatments. However, under 43 psu, P. oceanica and C. nodosa exhibited lipid oxidative damage, which occurred earlier in P. oceanica. Additionally, P. oceanica displayed an antioxidant response at higher salinities by accumulating phenolic compounds within 6 h and ascorbate within 7 d; whereas for C. nodosa the predominant antioxidant mechanisms were phenolic compounds accumulation and total radical scavenging activity, which was evident after 7 d of brines exposure. Finally, transcriptomic analyses in P. oceanica exposed to 43 psu for 7 days revealed a poor up-regulation of genes associated with brassinosteroid response and abiotic stress response, while a high down-regulation of genes related to primary metabolism was detected. In C. nodosa, up-regulated genes were involved in DNA repair, cell cycle regulation, and reproduction, while down-regulated genes were mainly associated with photosynthesis and ribosome assembly. Overall, these findings suggest that 43 psu is a critical salinity-damage threshold for both seagrasses; and despite the moderate overexpression of several transcripts that could confer salt tolerance, genes involved in essential biological processes were severely downregulated.


Assuntos
Alismatales , Ecossistema , Sais , Antioxidantes/metabolismo , Alismatales/fisiologia , Perfilação da Expressão Gênica , Mar Mediterrâneo
4.
Environ Res ; 241: 117629, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37967703

RESUMO

Despite the effects of ocean acidification (OA) on seagrasses have been widely investigated, predictions of seagrass performance under future climates need to consider multiple environmental factors. Here, we performed a mesocosm study to assess the effects of OA on shallow and deep Posidonia oceanica plants. The experiment was run in 2021 and repeated in 2022, a year characterized by a prolonged warm water event, to test how the effects of OA on plants are modulated by thermal stress. The response of P. oceanica to experimental conditions was investigated at different levels of biological organization. Under average seawater temperature, there were no effects of OA in both shallow and deep plants, indicating that P. oceanica is not limited by current inorganic carbon concentration, regardless of light availability. In contrast, under thermal stress, exposure of plants to OA increased lipid peroxidation and decreased photosynthetic performance, with deep plants displaying higher levels of heat stress, as indicated by the over-expression of stress-related genes and the activation of antioxidant systems. In addition, warming reduced plant growth, regardless of seawater CO2 and light levels, suggesting that thermal stress may play a fundamental role in the future development of seagrass meadows. Our results suggest that OA may exacerbate the negative effects of future warming on seagrasses.


Assuntos
Alismatales , Água do Mar , Água , Acidificação dos Oceanos , Concentração de Íons de Hidrogênio , Alismatales/fisiologia , Ecossistema
5.
Mar Pollut Bull ; 195: 115511, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37708607

RESUMO

Large boats can have a major impact on sensitive marine habitats like seagrass meadows when anchoring. The anchoring preference of large boats and their impacts can be mapped using Automatic Identification System (AIS). We found a constant increase in the number of anchoring events with, until recently, a large part of them within the protected Posidonia oceanica seagrass meadows. French authorities adopted a new regulation in 2019 forbidding any anchoring within P. oceanica seagrass meadows for boats larger than 24 m. The number of large ships (>24 m) anchoring in P. oceanica meadows significantly decreased after the enforcement of the regulation. The surface of avoided impact thanks to the new regulation corresponds to 134 to 217 tons of carbon sequestered by the preserved meadow in 2022. This work illustrates that a strict regulation of anchoring, based on accurate habitat maps, is effective in protecting seagrass meadows.


Assuntos
Alismatales , Aplicativos Móveis , Ecossistema , Alismatales/fisiologia , Navios , Carbono , Mar Mediterrâneo
6.
Mar Environ Res ; 189: 106034, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37290233

RESUMO

The epiphytes of seagrass leaves constitute a peculiar community, comprised of a number of species specialized for this living substrate. Several studies report on the response of epiphytes to different pressures but no information exists about the effects of summer heatwaves, which have become frequent events in the last decades. This paper represents the first attempt to investigate the change in the leaf epiphyte community of the Mediterranean seagrass Posidonia oceanica due to the heatwave occurred in summer 2003. Thanks to a series of data collected seasonally between 2002 and 2006, and punctual data in the summers of 2014 and 2019, we assessed the change over time in the leaf epiphyte community. Temperature data trends were analysed through linear regression, while multivariate analyses (i.e., nMDS and SIMPER) were applied to cover data in order to assess changes over time in the epiphyte community. As a whole, the two most abundant taxa were the crustose coralline alga Hydrolithon and the encrusting bryozoan Electra posidoniae, which displayed the highest average cover values in summer (around 19%) and spring (around 9%), respectively. Epiphytes proved to be sensitive to temperature highs, displaying different effects on cover, biomass, diversity and community composition. Cover and biomass exhibited a dramatic reduction (more than 60%) after the disturbance. In particular, Hydrolithon more than halved, while E. posidoniae dropped sevenfold during summer 2003. While the former recovered comparatively quickly, the latter, as well as the whole community composition, apparently required 16 years to return to a condition similar to that of 2002.


Assuntos
Alismatales , Temperatura Alta , Folhas de Planta/química , Alismatales/fisiologia , Biomassa , Temperatura , Mar Mediterrâneo
7.
Sci Rep ; 13(1): 10000, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37340008

RESUMO

Global warming is expected to have inexorable and profound effects on marine ecosystems, particularly in foundation species such as seagrasses. Identifying responses to warming and comparing populations across natural temperature gradients can inform how future warming will impact the structure and function of ecosystems. Here, we investigated how thermal environment, intra-shoot and spatial variability modulate biochemical responses of the Mediterranean seagrass Posidonia oceanica. Through a space-for-time substitution study, Fatty acid (FA) profiles on the second and fifth leaf of the shoots were quantified at eight sites in Sardinia along a natural sea surface temperature (SST) summer gradient (about 4 °C). Higher mean SST were related to a decrease in the leaf total fatty acid content (LTFA), a reduction in polyunsaturated fatty acids (PUFA), omega-3/omega-6 PUFA and PUFA/saturated fatty acids (SFA) ratios and an increase in SFA, monounsaturated fatty acids and carbon elongation index (CEI, C18:2 n-6/C16:2 n-6) ratio. Results also revealed that FA profiles were strongly influenced by leaf age, independently of SST and spatial variability within sites. Overall, this study evidenced that the sensitive response of P. oceanica FA profiles to intra-shoot and spatial variability must not be overlooked when considering their response to temperature changes.


Assuntos
Alismatales , Ácidos Graxos Ômega-3 , Ácidos Graxos , Ecossistema , Ácidos Graxos Insaturados , Estações do Ano , Aquecimento Global , Alismatales/fisiologia
8.
Proc Natl Acad Sci U S A ; 120(23): e2220678120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252966

RESUMO

Global change has converted many structurally complex and ecologically and economically valuable coastlines to bare substrate. In the structural habitats that remain, climate-tolerant and opportunistic species are increasing in response to environmental extremes and variability. The shifting of dominant foundation species identity with climate change poses a unique conservation challenge because species vary in their responses to environmental stressors and to management. Here, we combine 35 y of watershed modeling and biogeochemical water quality data with species comprehensive aerial surveys to describe causes and consequences of turnover in seagrass foundation species across 26,000 ha of habitat in the Chesapeake Bay. Repeated marine heatwaves have caused 54% retraction of the formerly dominant eelgrass (Zostera marina) since 1991, allowing 171% expansion of the temperature-tolerant widgeongrass (Ruppia maritima) that has likewise benefited from large-scale nutrient reductions. However, this phase shift in dominant seagrass identity now presents two significant shifts for management: Widgeongrass meadows are not only responsible for rapid, extensive recoveries but also for the largest crashes over the last four decades; and, while adapted to high temperatures, are much more susceptible than eelgrass to nutrient pulses driven by springtime runoff. Thus, by selecting for rapid post-disturbance recolonization but low resistance to punctuated freshwater flow disturbance, climate change could threaten the Chesapeake Bay seagrass' ability to provide consistent fishery habitat and sustain functioning over time. We demonstrate that understanding the dynamics of the next generation of foundation species is a critical management priority, because shifts from relatively stable habitat to high interannual variability can have far-reaching consequences across marine and terrestrial ecosystems.


Assuntos
Alismatales , Zosteraceae , Alismatales/fisiologia , Ecossistema , Mudança Climática , Baías
9.
Mar Environ Res ; 188: 106001, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37121172

RESUMO

In shallow coastal waters, seagrass and macroalgae occur together but under eutrophic conditions, bloom-forming algae can take over seagrasses causing an irreversible regime shift. Understanding the effect of macroalgae loads on seagrass meadows at an early stage can help prevent the loss of these ecosystems and the services they provide. In the present study, in situ experiments were conducted for 90 days in Bekalta (eastern coast of Tunisia) to assess the response of the seagrass Cymodocea nodosa when challenged with shading induced by filamentous macroalgae Chaetomorpha linum. Structural, morphological and physiological variables were regularly measured during the experiment. Shaded plants showed a sharp decline in shoot density, growth rate, and above-ground biomass, the impact being more pronounced on the physiological traits. Besides, shading by C. linum induced a significant increase in the contents of leaf photosynthetic pigments and phenolic compounds, whereas causing a decrease in soluble protein and sugar concentrations. Thus, shading imposed by C. linum loads appeared to induce a phoadpatative response in C. nodosa concomitant with carbon mobilization.


Assuntos
Alismatales , Clorófitas , Linho , Alga Marinha , Ecossistema , Alismatales/fisiologia , Biomassa
10.
Mar Pollut Bull ; 189: 114824, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36931153

RESUMO

The deepening of the thermocline, correlated to the rising temperature, can contribute affecting seagrass performance in a changing climate scenario. Here, the effect of the thermocline deepening on the seagrass Posidonia oceanica has been investigated in Cyprus through a manipulative experiment that allowed also testing the effects of the irradiance, origin depth and translocation. P. oceanica shoots were collected from 31 m of depth and transplanted at 12 m under a shading net, simulating the 31 m light conditions. Morphology (i.e. leaf area, leaf necrosis, number of leaves) and physiology (i.e. growth rate) were evaluated. Thermocline and origin depth effects were found with an increase of leaf necrosis, while a translocation effect was highlighted by a decrease in leaf area. No differences in shoot growth rate due to treatments were found. This experiment indicated an overall wide morphological and physiological acclimation of P. oceanica cuttings in coping with future thermocline conditions and it indirectly provides information for restoration efforts.


Assuntos
Alismatales , Folhas de Planta , Alismatales/fisiologia , Temperatura , Clima , Adaptação Fisiológica , Mar Mediterrâneo
11.
Sci Total Environ ; 877: 162517, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36868282

RESUMO

The continuous worldwide seagrasses decline calls for immediate actions in order to preserve this precious marine ecosystem. The main stressors that have been linked with decline in seagrasses are 1) the increasing ocean temperature due to climate change and 2) the continuous inputs of nutrients (eutrophication) associated with coastal human activities. To avoid the loss of seagrass populations, an "early warning" system is needed. We used Weighed Gene Co-expression Network Analysis (WGCNA), a systems biology approach, to identify potential candidate genes that can provide an early warning signal of stress in the Mediterranean iconic seagrass Posidonia oceanica, anticipating plant mortality. Plants were collected from both eutrophic (EU) and oligotrophic (OL) environments and were exposed to thermal and nutrient stress in a dedicated mesocosm. By correlating the whole-genome gene expression after 2-weeks exposure with the shoot survival percentage after 5-weeks exposure to stressors, we were able to identify several transcripts that indicated an early activation of several biological processes (BP) including: protein metabolic process, RNA metabolic process, organonitrogen compound biosynthetic process, catabolic process and response to stimulus, which were shared among OL and EU plants and among leaf and shoot apical meristem (SAM), in response to excessive heat and nutrients. Our results suggest a more dynamic and specific response of the SAM compared to the leaf, especially the SAM from plants coming from a stressful environment appeared more dynamic than the SAM from a pristine environment. A vast list of potential molecular markers is also provided that can be used as targets to assess field samples.


Assuntos
Alismatales , Temperatura Alta , Humanos , Ecossistema , Mudança Climática , Nutrientes , Alismatales/fisiologia , Mar Mediterrâneo
12.
Mar Environ Res ; 186: 105946, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36917890

RESUMO

Ocean acidification has been consistently evidenced to have profound and lasting impacts on marine species. Observations have shown seagrasses to be highly susceptible to future increased pCO2 conditions, but the responses of early life stages as seedlings are poorly understood. This study aimed at evaluating how projected Mediterranean Sea acidification affects the survival, morphological and biochemical development of Posidonia oceanica seedlings through a long-term field experiment along a natural low pH gradient. Future ocean conditions seem to constrain the morphological development of seedlings. However, high pCO2 exposures caused an initial increase in the degree of saturation of fatty acids in leaves and then improved the fatty acid adjustment increasing unsaturation levels in leaves (but not in seeds), suggesting a nutritional compound translocation. Results also suggested a P. oceanica structural components remodelling which may counteract the effects of ocean acidification but would not enhance seagrass seedling productivity.


Assuntos
Alismatales , Água do Mar , Água do Mar/química , Plântula , Concentração de Íons de Hidrogênio , Mar Mediterrâneo , Alismatales/fisiologia
13.
PLoS One ; 18(2): e0281668, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36795694

RESUMO

Aponogeton madagascariensis, commonly known as the lace plant, produces leaves that form perforations by programmed cell death (PCD). Leaf development is divided into several stages beginning with "pre-perforation" furled leaves enriched with red pigmentation from anthocyanins. The leaf blade is characterized by a series of grids known as areoles bounded by veins. As leaves develop into the "window stage", anthocyanins recede from the center of the areole towards the vasculature creating a gradient of pigmentation and cell death. Cells in the middle of the areole that lack anthocyanins undergo PCD (PCD cells), while cells that retain anthocyanins (non-PCD cells) maintain homeostasis and persist in the mature leaf. Autophagy has reported roles in survival or PCD promotion across different plant cell types. However, the direct involvement of autophagy in PCD and anthocyanin levels during lace plant leaf development has not been determined. Previous RNA sequencing analysis revealed the upregulation of autophagy-related gene Atg16 transcripts in pre-perforation and window stage leaves, but how Atg16 affects PCD in lace plant leaf development is unknown. In this study, we investigated the levels of Atg16 in lace plant PCD by treating whole plants with either an autophagy promoter rapamycin or inhibitors concanamycin A (ConA) or wortmannin. Following treatments, window and mature stage leaves were harvested and analyzed using microscopy, spectrophotometry, and western blotting. Western blotting showed significantly higher Atg16 levels in rapamycin-treated window leaves, coupled with lower anthocyanin levels. Wortmannin-treated leaves had significantly lower Atg16 protein and higher anthocyanin levels compared to the control. Mature leaves from rapamycin-treated plants generated significantly fewer perforations compared to control, while wortmannin had the opposite effect. However, ConA treatment did not significantly change Atg16 levels, nor the number of perforations compared to the control, but anthocyanin levels did increase significantly in window leaves. We propose autophagy plays a dual role in promoting cell survival in NPCD cells by maintaining optimal anthocyanin levels and mediating a timely cell death in PCD cells in developing lace plant leaves. How autophagy specifically affects anthocyanin levels remained unexplained.


Assuntos
Alismatales , Antocianinas , Antocianinas/metabolismo , Wortmanina , Apoptose/fisiologia , Alismatales/fisiologia , Folhas de Planta/metabolismo , Autofagia , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
14.
J Exp Bot ; 74(1): 472-488, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36272111

RESUMO

Understanding species-specific trait responses under future global change scenarios is of importance for conservation efforts and to make informed decisions within management projects. The combined and single effects of seawater acidification and warmer average temperature were investigated by means of the trait responses of Cymodocea serrulata, a tropical seagrass, under experimental conditions. After a 35 d exposure period, biochemical, morphological, and photo-physiological trait responses were measured. Overall, biochemical traits mildly responded under the individual exposure to high temperature and increasing pCO2 values. The response of C. serrulata was limited to a decrease in %C and an increase in the sucrose content in the rhizome under the high temperature treatment, 32 °C. This suggests that this temperature was lower than the maximum tolerance limit for this species. Increasing pCO2 levels increased %C in the rhizome, and also showed a significant increase in leaf δ13C values. The effects of all treatments were sublethal; however, small changes in their traits could affect the ecosystem services they provide. In particular, changes in tissue carbon concentrations may affect carbon storage capacity, one key ecosystem service. The simultaneous study of different types of trait responses contributes to establish a holistic framework of seagrass ecosystem health under climate change.


Assuntos
Alismatales , Água do Mar , Água do Mar/química , Ecossistema , Alismatales/fisiologia , Temperatura Alta , Temperatura , Carbono , Dióxido de Carbono , Concentração de Íons de Hidrogênio
15.
Mar Pollut Bull ; 187: 114507, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36566514

RESUMO

The effects of a commercial sunscreen mixture on the Mediterranean seagrass Posidonia oceanica were investigated, evaluating its response in physiological processes and biochemical indicators of oxidative stress. Short-term laboratory experiments were conducted recreating summer conditions, and two sunscreen concentrations were tested in whole P. oceanica plants placed inside aquaria. Although primary productivity of leaf segments seemed to benefit from sunscreen addition, probably due to inorganic nutrients released, the rest of the biological parameters reflected possible impairments in the overall functioning of P. oceanica as a result of oxidative damages. Chlorophyll production and nitrogen fixation associated with old leaves were inhibited under high sunscreen concentrations, which concurred with elevated reactive oxygen species production, catalase activity and polyphenols content in the seagrass leaves. These results emphasize the importance of directing future investigations on determining which specific components of sunscreen products are likely threatening the wellbeing of critical species, such as P. oceanica.


Assuntos
Alismatales , Protetores Solares , Protetores Solares/toxicidade , Estresse Oxidativo , Antioxidantes , Espécies Reativas de Oxigênio , Alismatales/fisiologia , Mar Mediterrâneo
16.
Mar Environ Res ; 183: 105809, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36435174

RESUMO

Human- and nature-induced hypersaline conditions in coastal systems can lead to profound alterations of the structure and vitality of seagrass meadows and their socio-ecological benefits. In the last two decades, recent research efforts (>50 publications) have contributed significantly to unravel the physiological basis underlying the seagrass-hypersalinity interactions, although most (∼70%) are limited to few species (e.g. Posidonia oceanica, Zostera marina, Thalassia testudinum, Cymodocea nodosa). Variables related to photosynthesis and carbon metabolism are among the most prevalent in the literature, although other key metabolic processes such as plant water relations and responses at molecular (i.e. gene expression) and ultrastructure level are attracting attention. This review emphasises all these latest insights, offering an integrative perspective on the interplay among biological responses across different functional levels (from molecular to clonal structure), and their interaction with biotic/abiotic factors including those related to climate change. Other issues such as the role of salinity in driving the evolutionary trajectory of seagrasses, their acclimation mechanisms to withstand salinity increases or even the adaptive properties of populations that have historically lived under hypersaline conditions are also included. The pivotal role of the costs and limits of phenotypic plasticity in the successful acclimation of marine plants to hypersalinity is also discussed. Finally, some lines of research are proposed to fill the remaining knowledge gaps.


Assuntos
Alismatales , Zosteraceae , Humanos , Estresse Fisiológico/fisiologia , Alismatales/fisiologia , Fotossíntese/fisiologia , Aclimatação
17.
Mar Pollut Bull ; 184: 114230, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36307950

RESUMO

Acclimation is a response that results from chronic exposure of an individual to a new environment. This study aimed to investigate whether the thermal environment affects the early development of the seagrass Posidonia oceanica, and whether the effects of a field-simulated Marine Heat Wave (MHW) on seedlings change depending on acclimation. The experiment was done in the field using a crossed design of Acclimation (acclimated vs unacclimated) and MHW (present vs absent) factors. Acclimation has initially constrained the development of P. oceanica seedlings, but then it increased their resilience to the MHW, under both a morphological and biochemical (fatty acid saturation) level. This treatment could be considered in P. oceanica restoration projects in a climate change-impaired sea, by purposely inducing an increased resistance to heat before transplants.


Assuntos
Alismatales , Plântula , Temperatura Alta , Ecossistema , Alismatales/fisiologia , Aclimatação , Mar Mediterrâneo
18.
Mar Environ Res ; 182: 105785, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36308799

RESUMO

Seagrass-herbivore interactions play a principal role in regulating the structure and function of coastal food webs, which were affected by nutrient enrichment. Seawater nutrient enrichment might change seagrass palatability by altering seagrass physical and chemical traits, consequently modulating herbivory patterns, but this remains elusive. In this study, the dominant tropical seagrass Thalassia hemprichii was cultured in different ammonium concentrations to examine the response of seagrass nutritional quality, deterrent secondary metabolites, and leaf toughness, as well as the subsequent effect of the changed physical (e.g., leaf toughness) and chemical traits (e.g., nitrogen content; total phenol) on the grazing activity of the herbivorous snail Cerithidea rhizophorarum. Ammonium enrichment enhanced seagrass nutritional quality and decreased physical defence. Low ammonium enrichment increased total phenol content, while high ammonium enrichment reduced it. Both low and high ammonium enrichment enhanced the grazing intensity of C. rhizophorarum on seagrass. Interestingly, nutritional quality mostly determined the herbivory preference of C. rhizophorarum on the intact seagrass having physical structure, with a chemical deterrent (total phenol) playing a secondary role. In contrast, chemical deterrent mainly determined the grazing intensity on agar seagrass food which was made artificially to exclude physical structure. This indicated that seagrass leaf physical structure might hinder phenol compounds from deterring herbivores. Overall, the results presented here demonstrate that ammonium enrichment remarkably increased seagrass palatability and subsequently induced higher susceptibility to herbivory, which might induce seagrass loss.


Assuntos
Alismatales , Herbivoria , Herbivoria/fisiologia , Alismatales/fisiologia , Cadeia Alimentar , Valor Nutritivo , Fenóis
19.
Mar Environ Res ; 177: 105636, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35569182

RESUMO

Seagrass ecosystems usually respond in a nonlinear fashion to increasing pressures and environmental changes. Feedback mechanisms operating at the ecosystem level and involving multiple interactions among the seagrass meadow, its associated community and the physical environment are known to play a major role in such nonlinear responses. Phenotypic plasticity may also be important for buffering these ecological thresholds (i.e., regime shifts) as many physiological processes show nonlinear responses to gradual environmental changes, conferring the appearance of resistance before the effects at the organism and population levels are visible. However, the potential involvement of plant plasticity in driving catastrophic shifts in seagrass ecosystems has not yet been assessed. In this study, we conducted a manipulative 6-month light-gradient experiment in the field to capture nonlinearities of the physiological and population responses of the seagrass Cymodocea nodosa to gradual light reduction. The aim was to explore if and how the photo-acclimatory responses of shaded plants are translated to the population level and, hence, to the ecosystem level. Results showed that the seagrass population was rather stable under increasing shading levels through the activation of multilevel photo-acclimative responses, which are initiated with light reduction and modulated in proportion to shading intensity. The activation of photo-physiological and metabolic compensatory responses allowed shaded plants to sustain nearly constant plant productivity (metabolic carbon balance) along a range of shading levels before losing linearity and starting to decline. The species then activated plant- and meadow-scale photo-acclimative responses and drew on its energy reserves (rhizome carbohydrates) to confer additional population resilience. However, when the integration of all these buffering mechanisms failed to counterbalance the effects of extreme light limitation, the population collapsed, giving place to a phase shift from vegetated to bare sediments with catastrophic ecosystem outcomes. Our findings evidence that ecological thresholds in seagrass ecosystems under light limitation can be explained by the role of species' compensatory responses in modulating population-level responses. The thresholds of these plastic responses anticipate the sudden loss of seagrass meadows with the potential to be used as early warning indicators signalling the imminent collapse of the ecosystem, which is of great value for the real-world management of seagrass ecosystems.


Assuntos
Alismatales , Ecossistema , Aclimatação , Alismatales/fisiologia , Carbono/metabolismo , Meio Ambiente
20.
Sci Rep ; 12(1): 7950, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562537

RESUMO

Marine heatwaves (MHWs) are increasing in frequency and intensity as part of climate change, yet their impact on seagrass is poorly known. The present work evaluated the physiological and morphological responses of Cymodocea nodosa to a MHW. C. nodosa shoots were transplanted into a mesocosm facility. To simulate a MHW, water temperature was raised from 20 to 28 °C, kept 7 days at 28 °C, cooled down back to 20 °C and then maintained at 20 °C during an 8-day recovery period. The potentially stressful effects of the simulated heatwave on the photosynthetic performance, antioxidative-stress level and area vs dry weight ratio of leaves were investigated. The maximum quantum yield of photosystem II (ΦPSII) increased during the heatwave, allowing the plants to maintain their photosynthetic activity at control level. Negative effects on the photosynthetic performance and leaf biomass of C. nodosa were observed during the recovery period. No significant oxidative stress was observed throughout the experiment. Overall, although C. nodosa showed a relative tolerance to MHWs compared to other species, its population in Ria Formosa is likely to be negatively affected by the forecasted climate change scenarios.


Assuntos
Alismatales , Alismatales/fisiologia , Mudança Climática , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...